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Fig. 1. Equal-time comparison between our adaptive kernel, the structure-adaptive kernel [Manzi et al. 2014], and the standard cross-shaped kernel. All
methods use gradients produced by gradient-domain path tracing with path reconnection.

Monte Carlo methods are a cornerstone of physics-based light transport
simulations, valued for their ability to produce high-quality photorealis-
tic images. These stochastic methods often suffer from variance, resulting
in undesirable noise in the rendered images. Gradient-domain rendering
(GDR) techniques mitigate this problem by estimating unbiased image-space
gradients via so-called shift-mapping operators. While these mappings are
computationally efficient, they can yield high-variance gradients—and thus
poor reconstruction quality—when applied to pixels with wildly different
integrals. We tackle this challenge by dynamically selecting the optimal set
of neighboring pixels for applying shift-mapping under random sequence re-
play. Key to our approach is a differentiable sorting network that softly ranks
the output of a convolutional neural network conditioned on input sample
features for weighted reconstruction. This module is carefully rigidified over
time to converge to a hard top-k selection, allowing end-to-end optimization
with respect to the reconstruction error. Our method is versatile and can be
jointly optimized with other adaptive sampling strategies. We demonstrate
variance reduction over other traditional adaptive gradient-domain methods
across scenes of varying radiometric complexity.
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1 INTRODUCTION

Photorealistic rendering aims to simulate the complex interactions
between light and matter in virtual environments. Achieving noise-
free results with widely-adopted Monte Carlo methods often re-
quires an impractical number of samples, especially in radiometri-
cally challenging scenes with complex visibility and indirect light-
ing. Gradient-domain rendering (GDR) [Hua et al. 2019; Lehtinen
et al. 2013] offers a compelling alternative for reducing variance by
exploiting correlation in image-space. In essence, GDR use local sim-
ilarities between neighboring pixels and computes image gradients
to recover the final image through a Poisson solver.

Core to gradient-domain light transport is the shift-mapping op-
erator, a mechanism that builds offset, correlated paths from primal
light paths. This is generally achieved via a cross-shaped, finite-
difference shifting kernel that uses immediate pixel neighbors to
compute gradients. While GDR methods can achieve higher quality
results compared to more traditional rendering methods under such
kernels, they tend to produce undesirable structural and singularity
artifacts in the output. Reconstruction quality may then suffer when
neighboring pixels do not correlate well with the base pixel. As a
result, adaptive shift-mapping operators based on cross-bilateral
filtering have been developed [Manzi et al. 2014, 2016b] to modify
the kernel shape based on additional salient per-pixel features (e.g.,
albedo, normal). Their use in practice, however, remains fairly lim-
ited due to their heuristic nature that can fail to properly inform
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the reconstruction. Adaptive sampling techniques [Back et al. 2018;
Liang et al. 2024] can help mitigate the drawbacks of poorly condi-
tioned kernels but their integration with gradient-domain renderers
remains relatively unexplored. As such, the need for robust adaptive
shift-mapping kernels for robust GDR still persists.

By design, shift-mapping operators are sensitive to the choice
of neighbors, and well-correlated neighbors are essential to their
effectiveness. Inspired by the recent progress of neural denoisers
[Huo and Yoon 2021; Isik et al. 2021], we introduce a learning-
based approach that adaptively and directly optimizes this neighbor
selection. Noting that k-nearest neighbor is not differentiable and is
not directly amenable to learning pipelines, we propose to employ
differentiable sorting networks [Petersen et al. 2021] to learn a soft-
top-k approximation that we harden over time to converge to the
true top-k operation. This natural design allows our reconstruction
pipeline to be efficiently trained end-to-end.

We demonstrate improved neighbor selection for random se-
quence replay shift-mappings on direct illumination on a custom
indoor scene dataset as well with path reconnection (Fig. 1). We
show the flexibility of how our method by combining it with neural
adaptive sampling for additional gains. Our model—which we im-
plement atop Mitsuba 3 [Jakob et al. 2022b]—is remarkably simple
and produces adaptive neural kernels that consistently outperform
other gradient-domain rendering techniques at equal sample count.
Both our model and dataset will be made publicly available upon
publication.

To summarize, our main contributions are:

e a per-sample flexible neural module that automatically deter-
mines how to select neighboring pixels,

e an integration with adaptive neural sampling, and

e an indoor scene dataset for training reconstruction methods.

Code and datataset for this paper are available at: https://github.
com/MattJosse/adaptive-neural-kernel.

2 RELATED WORK

Gradient-domain rendering. The seminal work of Lehtinen et al.
[2013] on gradient-domain Metropolis light transport demonstrates
the benefits of estimating image-space gradients [Bhat et al. [n.d.]]
for variance reduction. In its original formulation, a screened Pois-
son solver is used to reconstruct the final image, which can also be
expressed as an image-space control variate [Rousselle et al. 2016].
Multiple shift-mapping operators have been developed [Hua et al.
2019] and adapted to path-tracing [Kettunen et al. 2015], bidirec-
tional path-tracing [Manzi et al. 2015], density estimation [Hua
et al. 2017], vertex-connection and merging [Sun et al. 2017] and
volume rendering [Gruson et al. 2018]. Specialized shift-mappings
have also been introduced to extend gradient-domain rendering to
the temporal [Manzi et al. 2016a] or spectral [Petitjean et al. 2018]
domains. Gradient outlier clipping [Ha et al. 2019] and generalized
albedo demodulation [Fang and Hachisuka 2024] can further reduce
visual artifacts. Recently, these operators have been extended to
real-time rendering with ReSTIR [Lin et al. 2022; Wyman et al. 2023]
and multi-view rendering [Fraboni et al. 2022]. In this work, we
focus on gradient-domain path-tracing [Kettunen et al. 2015] as a

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

case study for our adaptive neighboring selection algorithm and
leave the exploration of the other integrators for future work.

In general, shift-mappings compute gradients of one-off neigh-
boring pixels in a cross-like pattern. Bauszat et al. [2017] show that
larger kernels can further reduce noise. Our work draws inspira-
tion from Manzi et al. [2014] which employs guiding features and a
simple heuristic to choose neighbors and estimate screen-space gra-
dients. We propose a learning-based approach that circumvents the
need for handcrafted strategies, hence allowing for more flexibility.

Neural methods for Monte Carlo reconstruction. Neural image de-
noising has been extensively applied to Monte Carlo rendering,
where neural networks are optimized to predict noise-free images
from input-target pairs [Bako et al. 2017; Chaitanya et al. 2017;
Gharbi et al. 2019; Huo and Yoon 2021; Isik et al. 2021; Meng et al.
2020; Munkberg and Hasselgren 2020; Wong and Wong 2019]. To
improve guidance, auxiliary per-pixel or per-sample features can be
supplied to the network. We adopt a hybrid approach similar to Isik
et al. [2021] where we process individual samples but summarize
their latent contexts into per-pixel statistics. We note that guiding
features can be repurposed to regularize the Poisson reconstruction
process [Manzi et al. 2016b] in gradient-domain rendering. Addition-
ally, gradient estimates can directly be used as input [Kettunen et al.
2019a] or as a first-order loss term [Guo et al. 2019; Xu et al. 2020].
Yan et al. [2024] instead propose to use filtered gradient estimates
for image smoothing. These works are orthogonal to our method
and do not support arbitrary image-space gradient estimates by
default. We note, however, that our reconstructed images can be
combined with other denoisers [Back et al. 2020, 2018].

Adaptive sampling. Nonuniform sampling over the image space is
an efficient method to redistribute the error in image-space [Zwicker
et al. 2015]. Adaptive techniques often rely on error estimates and
multiple sampling rounds to refine them. Manzi et al. [2016a] apply
this idea to GDR and introduce a variance-based adaptive sampling
approach based on prior frames. Back et al. [2018] perform adaptive
sampling using the polynomial rendering framework of Moon et al.
[2016], where a reconstructed image from the gradient domain
is used for guiding. These works cannot be easily combined or
extended when adaptive kernels are employed. In contrast, our
method directly supports adaptive sampling by design.

Most relevant to our adaptive scheme is DASR [Kuznetsov et al.
2018] which computes the gradient of a renderer with respect to the
number of samples. Such gradients allow the joint training of all
components of the model. Due to its ease of implementation, DASR
was adapted to real-time, temporal scenarios [Hasselgren et al. 2020]
and volume rendering [Hofmann et al. 2021]. Salehi et al. [2022]
compute similar gradients by expressing the pixel errors via an
analytical distribution, thereby circumventing the need to construct
a large training dataset. To the best of our knowledge, the most
recent adaptive method tailored to gradient-domain rendering is
that of Liang et al. [2024] which combines DASR and a neural recon-
struction module [Kettunen et al. 2019a]. Here, different sampling
densities are allocated on primal, vertical and horizontal gradients.
This technique differs from ours in the shape of the proposed ker-
nels since we train adaptive neural kernels hand-in-hand with our
adaptive sampling prediction network.


https://github.com/MattJosse/adaptive-neural-kernel
https://github.com/MattJosse/adaptive-neural-kernel

3 BACKGROUND
3.1 Gradient-domain rendering

We start by briefly reviewing Monte Carlo rendering and its gradient-
domain extension.

Path integral formulation. We are interested in solving the light
transport equation [Veach 1998]: given a light path x € P, we seek
a radiance measurement I; at pixel i by computing the integral

Ii= /P R(®)f () du(®), )

where r; is the reconstruction filter, f is the path contribution func-
tion, and p is the area-product (Lebesgue) measure over the space
of path X € . Equation (1) can be approximated using Monte Carlo
(MC) integration.

Shift-mapping operators. The goal of shift-mapping [Lehtinen
et al. 2013] is to construct offset paths from a base path and leverage
correlation between them. At their core, these operators transform
an input path X passing through pixel i into a shifted path y passing
through a different neighboring pixel j. Denoting this mapping as
T : X — y and covering the full domain of j, we can formulate the
new measurement at pixel j as

= /P 7 (T £(T(%))| det I (%)] du(), @

where J7(X) = 9T (X)/0x is the Jacobian matrix which determinant
accounts for the change in integration domain. Since the reconstruc-
tion filter (box) remains unchanged under shifting, we have that
rj(T(%)) = ri(%). Taking the difference A;—,j := I; — I; between the
two pixels shifting from i to j, we obtain

M= [ ) (F(r ) et - F0) dutw.

Since it is generally the case that T(X) ~ % (making | detJ7(X)| = 1),
Eq. (3) becomes zero on most pixels. Consequently, a MC estima-
tor (Aj— )N tends to have lower variance in image-space than its
primal. Note that the domain coverage property for deriving Eq. (2)
can be achieved with random replay shift-mapping [Hua et al. 2019].

Image reconstruction. After estimating gradients, we perform a
screened Poisson reconstruction [Bhat et al. 2008] :

I" = argmin (Allr = @I+ = wflor = aplly). @

where § is the finite-difference convolution operator and A > 0 is
a hyperparameter controlling the importance of the primal image.
Solving Eq. (4) with n = 2 yields unbiased reconstructions, while
n = 1 is typically more robust [Lehtinen et al. 2013]. Albeit many
solvers exist, we use the simpler iterative reconstruction scheme
from Rousselle et al. [2016] which allows arbitrary weighting strate-
gies. Here, we solve iteratively as

11 = 1)
5
Ii(tﬂ) =wPI® 4 Z wl.gj(lj(.t) - (Aij>), teN, ©)
J
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Fig. 2. Example of a simple sorting network on n = 4 integer inputs.
Left: Each solid line represents a wire/lane and the dashed lines indicate

pairwise comparators for potential swaps. Right: After a series of conditional
swap operations, the final output vector is sorted as (3,2,4,1) — (1,2,3,4).

where wP, w8 > 0 are the primal and gradient respective weights
satisfying wP + 3; wf = 1, and t < 50 iteration steps generally
suffice.

Structure-adaptive gradient kernels. The performance of GDR algo-
rithms highly depends on the choice of pixel neighbors. To mitigate
this issue, Manzi et al. [2014] propose to quantify pixel similarity
using auxiliary feature guides g and formulate a similarity score
between pixels i and j via a Gaussian bilateral filter [Dammertz et al.
2010] defined as

sij = exp (~max (0, g — g1 — d) /2. ©

where b, d > 0 are user-defined bandwidth and threshold parameters
conveying the importance of a feature. The final affinity score is
then computed as the minimum over all features. While fast to
compute, this technique has some limitations. First, the choice of
global parameters can produce locally suboptimal results in different
scenes. Second, these coefficients cannot be optimized as standard
gradient-domain reconstruction is not differentiable with respect
to the kernel selection weights. Finally, Eq. (6) is a heuristic and
cannot easily scale to non-geometric path features such as material
and scattering types. We address these shortcomings in Section 4.3.

3.2 Differentiable sorting networks

Definition. Sorting networks [Knuth 1998] are a class of compu-
tational models used to perform sorting through a fixed sequence
of comparisons and swaps.! They can be visualized as a series of
wires (or lanes) representing the data, and conditional pairwise
swapping operators. Intuitively, each operator swaps two connected
values if they are out of order. Conditional swap operators can be
implemented with min and max operations only. Given an input
x = (x,y) € R?, the odd-even sorting network [Habermann 1972]
updates the elements as

x' = (x".y) = (min(x, y), max(x, y)), ™

which yields the output satisfying x” < y’. This process can be
trivially generalized to sort any length-n vector by repeating swaps
across n successive wires. We provide a visualization of this in
Fig. 2. The more efficient bitonic sorting network [Batcher 1968]
repeatedly merges and sorts bitonic sequences via a divide-and-
conquer approach [Kipfer and Westermann 2005].

!Note that despite their name, sorting networks are not neural networks that sort.
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B min(x, y) Cauchy (8=2) Cauchy (8 =20)
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Fig. 3. We visualize different smooth relaxations of the hard minimum
operator min(x, y) for pairs (x, y) € [A, B]? with different stiffness § =
1/7. The logistic relaxation approximates the minimum but is nonmonotonic,
which is undesirable. The Cauchy relaxation offers a monotonic alternative
with bounded error, which can be “hardened” by progressively decreasing
the temperature parameter 7 to improve the approximation.

Differentiable swap operators. The above min/max operators are
nondifferentiable but can be made differentiable via relaxation [Pe-
tersen et al. 2021], e.g. via the logistic relaxation:

ming(x,y) =x - F(y—x) +y- F(x - y),

maxp(x,y) =x - F(x —y) +y- F(y — x), ®

where F(z;7) = 1/(1 + exp(—7z)) is the cumulative distribution
function (CDF) of the tempered logistic distribution with (inverse)
temperature 7 > 0. Petersen et al. [2022a] showed that any sigmoid-
like relaxation should be monotonic and have bounded error for the
resulting differentiable sorting network to match the result of the
hard sorting function. To this end, the logistic function is replaced
with the CDF of the Cauchy distribution as an improved relaxation:

1 1
Fcauchy(z;7) = — arctan(rz) + —. )
T 2
We show a comparison in Fig. 3 to provide some intuition.

Discussion. Like any differentiable functions, differentiable sorting
networks (DSNs) can be used in learning pipelines and trained with
gradient-based optimization. Some applications include differen-
tiable k-nearest-neighbors [Grover et al. 2019], differentiable patch
selection for image recognition [Cordonnier et al. 2021] and top-k
attention for machine translation [Xie et al. 2020]. In Section 4.3,
we show how to apply this technique to gradient-domain rendering
for top-k neighbor selection under shift-mapping.

4 NEURAL SHIFT-MAPPING KERNELS
4.1 Overview

We propose an adaptive shift-mapping kernel operators for gradient-
domain rendering using neural networks. Core to our technique are
(1) a sample embedder that reduces samples to pixel embeddings,
(11) a convolutional neural network (CNN) that propagates informa-
tion to neighboring pixels, (111) a differentiable sorting network that
performs neighbor selection, and (1v) a weighted iterative image re-
construction scheme (Eq. (5)). More precisely, the sample reducer is a
small multilayer perceptron (MLP) that summarizes per-sample fea-
tures to per-pixel statistics. A CNN then processes these embeddings
by sharing information spatially and outputs a vector of normalized
neighbor scores for each pixel. We employ a differentiable top-k
network [Petersen et al. 2022b] to rank and select the best neighbors
based on these predicted scores. Selected candidates are traced to
compute image-space gradients under random sequence replay and
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an iterative weighted reconstruction loop is ultimately performed to
generate the final image. Our neural pipeline is summarized in Fig. 4
(left). Additionally, we illustrate how our adaptive sampling network
uses data from our neural pipeline to construct a sampling map in
Fig. 4 (right).

4.2 Per-pixel feature encoder

To guide the reconstruction process, we supply several per-sample
features to our model, denoted as g;s for pixel i and sample s. First,
we use normalized depth (1), surface normal expressed in camera
space (3), diffuse albedo (3), and surface roughness (1), which we
linearize with r +— 1 — exp(—r). We also store the scattering type
(6) encoding the surface interaction as a binary vector (i.e, diffuse,
glossy, pure-specular, reflection, transmission, emissive). Since shift-
mapping operators are sensitive to different base and offset path
surface interactions, we explicitly provide these to our network. We
also supply the primal radiance (3) per sample, tonemapped with
x > log(1 + x). We found this noisy feature to be useful to reason
about radiance variation, such as visibility in direct illumination. In
total, our per-sample auxiliary features have 17 dimensions.

Inspired by prior work on hybrid sample-pixel denoising tech-
niques [Isik et al. 2021], we independently encode N samples via a
small, 3-layer MLP E(0) with leaky ReLU activations, then compute
the average and maximum statistics of the embeddings. We further
concatenate positionally-encoded image-space positions (8) [Tancik
et al. 2020] to obtain per-pixel summary features e;. We show in our
ablation study (Section 5.3) that this encoding is important in pre-
venting correlation in the output, which may occur across surfaces
with very little variation in features (e.g., a flat white plane).

4.3 Spatial neighbor selector

Once the sample features are reduced and encoded, we employ a
U-Net [Ronneberger et al. 2015], denoted as U(¢), to transform
per-pixel contexts to neighbor scores. Recall that our goal is to use
the output of this network to select k < h? — 1 := H — 1 neighboring
candidates in a square window N of size h centered at pixel i. This
process should be differentiable so that we can learn directly learn a
selection strategy end-to-end with image reconstruction.

Naive neighbor selection. A simple approach is to directly regress
neighboring scores and pick the k highest ones. To do so, we can
predict weights w8 € R7~1 and trivially apply a r-relaxed softmax:

exp(Twy)

Ule;g) = o(ws),  where o(w); = 5= 0,
Jj J

(10)
where 7 > 0 is a temperature parameter controlling the shape of
the output distribution over the window and we have dropped the
pixel subscript i for clarity. Intuitively, 7 — 400 produces a sharper
distribution converging to a single entry (i.e., a one-hot vector),
whereas 7 — 0 converges to a uniform distribution.

While this annealing scheme can correctly identify the best neigh-
boring candidate, it cannot generalize to multiple candidates. Com-
puting top-k scores inherently requires ranking, which typically
involves index swapping—a nondifferentiable operation—making it
challenging to explicitly define the training objective. Additionally,
propagating gradients to selected neighbors does not truly emulate
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Fig. 4. Pipeline overview. Left: A small per-sample MLP first encodes and aggregates sample features into per-pixel summary statistics. These pixel encodings
are then processed by a U-Net to produce a context vector that gets decoded into a weighted neighbor kernel w8 and a primal weight wP. A differentiable
sorting network uses these weights to rank and pick appropriate neighbors for the weighted reconstruction. Right: Our adaptive sampling network uses the
encoded inputs, the deep context and the predicted kernel bits to build the sample map that is used to generate I and A;;. The model is trained end-to-end.

a top-k operation since we cannot capture the gradients with respect
to the selection process. One alternative is to use multiple rounds
of a relaxed Gumbel selection process without replacement [Kool
et al. 2019]. However, we empirically found that this prevents the
optimization from converging entirely. As such, a more principled
neighbor ranking module is required.

Differentiable top-k selection. Our key insight is to replace the
softmax layer from Eq. (10) with a differentiable arg top-k layer
[Petersen et al. 2022b], which outputs a deterministic selection
probability for each weight. The inferred probabilities are then
multiplied with the predicted gradient weights w8, as we discuss in
Section 4.4. When the temperature 7 is sufficiently low, the output
of this operation becomes indistinguishable from the (hard) top-k.
In practice, we observe that switching to the (hard) top-k becomes
necessary when 7 drops below 1073, as gradient computation tends
to become unstable at low temperatures.

Score predictor network. Our differentiable sorting network acts
on normalized neighbor scores, similar in spirit to the output of
kernel prediction network. We learn these vectors using a simple
5-scale U-Net [Ronneberger et al. 2015] with concatenation for skip-
connections. Our neural architecture reads

(c64)2 » (c64)2 » (c80)2 » (¢96)2
<« (c80)2 < (c64), <« (c64)2 < (cH)y,

where (cf), denotes r blocks of 3 X 3 convolution with ¢ channels,
» denotes 2 X 2 max-pooling, and <« is 2 X 2 bilinear upsampling.
We use leaky ReLU activations for all convolutions except the last
one. The output of the U-Net goes through a small MLP to reduce
the dimension. The weight w8 is normalized and wP is activated
via a softplus function. Our convolutional and sorting network
respectively output

U(e;p) = (wP, wt), (11)
arg topy (w8; 7) = p&, (12)

where p& > 0 is the probability for each neighbor {j1,...,jx|Jj €
N} to be selected at stiffness 7. Note that this selection probability
is made binary at inference time since we use a hard top-k selection.

4.4 Image reconstruction

Reconstruction process. We use the iterative solver from Eq. (5)
using the weights wP and w8 predicted by our model, where we en-
sure normalized weights for correct reconstruction [Rousselle et al.
2016]. Adding weights to the reconstruction step has two benefits.
First, it improves reconstruction quality by encoding the importance

of neighbors, aiding both stability and diversity. The network can
also choose to balance primal and gradient information, akin to the
parameter A in Eq. (4). Second, it establishes a direct link between
predicted weights and the final image during optimization, which
makes hard top-k selection differentiable. We show in Table 2 that
soft top-k with temperature scheduling leads to improved stability
during training.

Since both gradient directions from i — j (and vice versa) are
sampled in A;;, note that we update both i and j with A;;’s infor-
mation, even in cases where j is i’s neighbor.

Control variates weighted reconstruction. Our technique can be
extended to support weighted reconstruction based on variance
information [Rousselle et al. 2016]. In this scheme, we still use
our predicted weights wP and w® and multiply our weights to the
variance-based weights during reconstruction. We then update the
variance of the primal accordingly.

4.5 Kernel-aware adaptive sampling

Our method can be easily combined with DASR [Kuznetsov et al.
2018] for additional variance reduction. We use their finite-difference
approach to calculate the gradient with respect to the number of
sample s for both the primal and the gradient images:

s licw—Iis dAijs

(13)
ds s 0s s
Here, I; s and A;j s are computed on-the-fly by combining indepen-
dent estimates using power-of-two sampling counts, and I; o and
Ajjco denote groundtruth images.

Ajjoo = Aijs

Adaptive network. To predict our sampling map, we use a simple
3-layer convolutional network with leaky ReLUs, taking as input
the encoded per-pixel features, the context vector computed by the
U-Net, and the binary kernel. The output is projected to a positive
scalar, activated with a square function, and normalized across the
image. We then convert the resulting sampling weights M € REXW
to a sampling map via the mapping M — M(HW (S — 1)) + 1, where
S is our sample budget, ensuring every pixel receives at least one
sample. Contrary to Liang et al. [2024], we use the same number
of samples for the gradient and primal information. We leave for
future research the exploration of using different samples for primal
and individual gradients in adaptive kernel frameworks.

4.6 Loss function

We use a composite loss to train to regularize our model. Define
0 = (0, ¢) and let x, y be the Reinhard-tonemapped predicted and
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Fig. 5. Comparison with and without differentiable sorting networks (DSNs)
for our method. Without DSN, optimization get trap inside a miminma
which translate to artefacts inside the reconstructed image.

target pixels, respectively. We define our objective function as
L(0) = Lperc(©) + A1 Lrecons (0) + A2 Lreg (), (14)
where
Lperc(©) = Ex,y dipips (SRGB(x), sSRGB(y)),
Liecons(©) = Ex,y [llx = yll1 + [16x = Syl ], (15)
Lieg(©) = Exy [IWE(1 - p®)Il1],

and ¢ is the finite difference operator between a pixel and its neigh-
bors. We add a regularization in the form of a L!-loss on the non-
selected neighbors; in essence, .Creg (©) weakens unselected weights
and smooths out the stiffness during annealing. Following previous
works on neural gradient-domain rendering [Kettunen et al. 2019a;
Liang et al. 2024], we set A1 = A3 = 0.01 for all experiments.

5 RESULTS AND DISCUSSION
5.1 Experimental setup

Dataset. To generate our dataset, we randomly sample scenes
with photorealistic appearances and lighting profiles. We manually
select 10 indoor scene templates across 5 categories (BEDROOM,
KrtcHEN, L1vING RooMm, BATHROOM, OFFICE) from the SceneNet
dataset [Handa et al. 2016]. Each template is closed and contains a
large amount of labelled furniture and everyday objects. We then
randomly assign materials and sample camera extrinsics/intrinsics
similar to Gharbi et al. [2019], for a total of 1000 unique frames. We
compute image-space gradients using random replay shift-mapping
at all pixels for a window size of h = 5 (i.e., 24 candidate neighbors).
For adaptive sampling, we compute all gradient and primal buffers
[Kuznetsov et al. 2018] along with their associated variance for
the weighted reconstruction. All scenes are rendered at resolution
256 x 256 and we use {2,..., 10} spp for the input, 1024 spp for the
gradients, and 4096 spp for the reference. More details about the
dataset generation can be found in our supplemental material. Our
dataset will be made publicly available upon publication.

Training and implementation. Our neighbor selection network
is first trained with uniform sampling using the Adam optimizer
[Kingma and Ba 2015]. We use the schedule-free approach of Defazio
et al. [2024], starting at 10~* and we simultaneously increase the
stiffness parameter from 79 = 10° to 7; = 10*. This final temperature
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Manzi et al. 2014 N Ours

Fig. 6. Comparison between the number of pixels connected and the shape
of the kernel between Manzi et al. [2014] and ours. Our method favors
unstructured kernels in smooth areas and adapts to local features when
required. Cyan indicates bidirectional selection, whereas blue and green
mean forward and backward selections.

is chosen so that the soft-top-k operation converges to a pseudo-
hard-top-k operation. We perform 50 000 iterations of training with
a batch size of one, which saturates GPU utilization. In the last
15000 iterations, we swap this soft approximation with a hard one.

We bootstrap the training of our adaptive sampling network by
initially freezing the weights of the neighbor selection network
for 15000 iterations. After this phase, we jointly train both net-
works as we found that this boosts the overall performance of the
model. In total, we perform 100 000 training iterations, which takes
approximately 12 hours on a NVIDIA RTX 3080.

We implemented our method in PyTorch and integrated it atop
Mitsuba 3’s [Jakob et al. 2022b,a] rendering system. For the dif-
ferentiable sorting network, we use the sparse implementation of
DirrTorK [Petersen et al. 2022a,b] with bitonic sort and a Cauchy
relaxation (Eq. (9)).

Baselines. We compare our method to the standard cross-shaped
kernel shift-mapping and the structure-adaptive gradient kernel
approach of Manzi et al. [2014], henceforth denoted as CSK and SAK,
respectively. We also briefly compare with NGPT [Kettunen et al.
2019b] which, while more akin to a neural denoiser, uses gradient-
domain information to perform a similar task. We do not compare
against Manzi et al. [2016b] or Ha et al. [2019] as these works mainly
focus on improving the Poisson reconstruction process.

As described in Section 4.4, if j is selected as a neighbor of i
then j also receives information from A;; at each reconstruction
iteration even if i is not selected as a neighbor. We empirically
observed that each pixel is linked to an average of 6 other pixels
even though it has 4 selected neighbors. A similar phenomenon
appears with the adaptive strategy of Manzi et al. [2014] with over
4.6 neighbors (on average) are selected and concentrated in regions
of sharp discontinuities. Even if our adaptive kernel chooses more
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(0.133, 0.138) (0.128, 0.118) (0.162, 0.176) (0.153, 0.159)

Fig. 7. Comparison of adaptive sampling with and without it for SAK [Manzi
et al. 2014] and our method. We see comparable sampling patterns, but our
method more effectively distributes samples across the image due to our
end-to-end approach.

neighbors, the number of paths for estimating the image-space
gradients and primal is the same for all techniques. For our analysis,
we use the same number of samples across all different techniques.

5.2 Analysis

We report symmetric mean absolute percentage error (SMAPE) and
ALIP [Andersson et al. 2020] for our quantitative evaluation. We
provide an interactive web viewer in our supplemental material
to show full images as well as error maps for additional metrics.
We refer to the test dataset, which includes the six scenes shown in
Figures 10 and 11. All images are rendered at 800 X 800 resolution,
while training was performed on 128 X 128 patches.

Kernel shape and number of neighbors. We show in Fig. 5 that us-
ing a Soft top-k relaxation during training is necessary for our model
to produce optimal neighbors selection. We compare the shapes of
our learned kernels and the distribution of selected neighbors at dif-
ferent pixel locations in Fig. 6. Our method produces strided kernels
in smoother regions, facilitating the removal of lower frequency
noise during the reconstruction step. In contrast, SAK strongly fa-
vors a cross-shaped kernel due its thresholding mechanism that
reduces the risk of overfitting to specific auxiliary features. In chal-
lenging regions, our method generates shift-mapping kernels that
better adapt to the object structures and properties, whereas SAK
produces suboptimal kernels due to the hand-crafting nature of
bilateral filtering.

Comparison with uniform reconstruction. Figure 10 compares the
performance of our method against baseline approaches using un-
weighted reconstruction [Rousselle et al. 2016]. Our technique stands
out as the only approach capable of effectively reducing dipole arti-
facts. In contrast, SAK demonstrates uneven reconstruction across
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Fig. 8. Comparison between NGPT [Kettunen et al. 2019b] and our method
across varying input sample counts. Our method demonstrates improved
generalization and is unbiased compared to NGPT.

the image, likely due to the impact of an uninformed neighbor se-
lection policy on the reconstruction process. In smoother regions
(e.g., ceilings), our method correctly removes low frequency arti-
facts at the same number of reconstruction steps due to our aligned
kernels. We note that the inclusion of the predicted weights wP and
w8 further improve the overall reconstruction quality. Compared to
variance-based weights Rousselle et al. [2016], our weighted method
does not particularly suffer at low sample counts (i.e., 1 spp).

Adaptive sampling. Figure 7 compares our adaptive sampling
method with SAK augmented using deep adaptive sampling [Kuznetsov
et al. 2018]. Our adaptive network is a lightweight MLP with 4 lay-
ers and 32 hidden dimensions each, as we found that the features
extracted by our neighbor selection network provide already rich
information for this task. The adaptive sampling network used in
SAK employs the same per-sample encoder and U-Net architecture
as our neighbor selection network. While both methods benefit
from adaptive sampling, our fully trainable approach yields superior
rendering results, thanks to the sampling map generator’s access to
salient contextual information from gradient-domain neighbors.

Weighted reconstruction. We showcase results using a weighted
reconstruction scheme based on variance statistics [Rousselle et al.
2016] in Fig. 11. In particular, we employ our method with predicted
weights wP and w® as well a combination of these weights and
control variates (see Section 4.4). The inclusion of variance statistics
improves our method further and maintains an advantage for low-
frequency noise reduction in smooth regions.

Neural reconstruction. Figure 8 compares our method against
NGPT [Kettunen et al. 2019b] on both in-distribution and out-of-
distribution scenes, since dense residual prediction networks tend
to be more sensitive to train-test mismatches than kernel methods.
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Fig.9. Comparison of adaptive sampling with and without it for SAK [Manzi
et al. 2014] and our method for path tracing integrator. We can observe that
our adaptive sampling and kernel adaptation generalize to this integrator.
SMAPE Error is visualize here.

We reimplemented NGPT in PyTorch but used the same U-Net back-
end as our method (i.e., without dense connections) to fairly assess
the benefits of dense predictions over adaptive kernels. The input
features include primal and image-space gradients, surface normals,
albedo, and depth. We used the LPIPS [Zhang et al. 2018] loss instead
of E-LPIPS [Kettunen et al. 2019c¢], as no PyTorch implementation
of the latter is publicly available. The in-distribution inputs are gen-
erated from our synthetic scene generator used for training. While
NGPT exhibits good reconstruction capabilities, results are always
biased even at high sample counts and quality plateaus at around
32 spp. In contrast, our framework does not suffer from these issues
and remains unbiased, hence showing better generalization.

Indirect lighting. We show how our methods perform with path
tracing, where image-space gradients are estimated by random re-
play (Fig. 9) and path reconnection (Fig. 1). Our network was trained
on the same dataset, regenerated using path tracing with random
replay. We found that the network trained on direct lighting also
generalizes well to the path-traced estimator. We maintain that one
of the benefits of our p-Weight approach is its simplicity and ease of
integration into a deep adaptive sampling procedure. CV Weighted
reconstruction requires more complex gradient computation and it
is left to future work.

Table 1. Equal-time comparison of our method and prior work across the test
dataset, showing error metrics under uniform and weighted reconstruction.

Method spp ILIP LPIPS SMAPE
«; CSK [Lehtinen etal. 2013] 74  0.0242  0.117 0.121
g SAK [Manzi et al. 2014] 74 0.0256 0.124  0.110

Ours 64 0.0242 0.107 0.080
# CSK[Lehtinenetal 2013] 74 0.0234 0110  0.086
2 SAK [Manzi et al. 2014] 74 0.0246 0118  0.085
2 Ours 64  0.0236 0.108 0.076
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Table 2. Comparison of the different error metrics of different variations of
our methods and prior works across the test dataset.

Method JLIP LPIPS SMAPE
CSK [Lehtinen et al. 2013] 0.040  0.185 0.168
SAK [Manzi et al. 2014] 0.042  0.194 0.158
CSK + Reconstruction weights 0.041  0.180 0.128
+ Hard top-k 0.057  0.271 0.181
+ Soft top-k 0.046  0.258 0.178
+ Fourier and material features 0.040  0.178 0.122
+ Primal image 0.039  0.154 0.117
+ Per-sample features 0.037 0.147 0.117

CSK + Full Input Features 0.040  0.173 0.125

Performance. We profile our method on a NVIDIA RTX 4080 Super
GPU on the KITCHEN scene (800x800). Gathering features other
than primal takes a flat 2 ms, and inference takes 12 ms. The former
accounts for 6 spp of direct illumination and 2 spp in path tracing
mode. Additionally, the 10 samples of input primal cost an equivalent
of 3 spp, since image-space gradients are not required. Our total
overhead is thus 9 spp in direct illumination and 5 spp in path tracing.
Figure 1 shows an equal-time comparison that accounts for this
overhead and demonstrates that, even under these conditions, our
method consistently outperforms alternative image-space kernels.
Moreover, Table 1 reports equal-time comparison results on the test
dataset. With uniform reconstruction, our method achieves better
metrics than CSK and SAK, particularly in SMAPE. This metric
heavily penalizes dipole artifacts, which are not effectively reduced
by simply adding more samples. Our framework also generalizes
well to weighted reconstruction, achieving comparable performance
in FLIP and LPIPS, while obtaining superior scores in SMAPE.

5.3 Ablation study

Table 2 quantifies the contribution of each design decision to aver-
age test error, with corresponding CSK and SAK scores. The results
confirm that all components are essential for achieving maximum
performance. Initially, we train using forced CSK selection with
only reconstruction weight optimization. Following Manzi et al.
[2014], we use basic depth, albedo, and normal buffers as input. This
approach produces only moderate baseline improvements. Hard
top-k neighbor selection degrades output quality by restricting ex-
ploration. Swapping for a soft top-k selection, on the other hand,
improves quality but remains limited due to simplified input data.
Enriching the input data further improves results. Pre-sampled pri-
mal data provides essential lighting information, while per-sample
buffer inputs reveal feature variance that helps identify geometric
and illumination discontinuities. Training reconstruction weights
without our adaptive kernel selection (last row of Table 2), but
using all the input features described above, results in only mar-
ginal improvement. This demonstrates that a more flexible neighbor
selection is necessary to improve the performance of our method.



6 CONCLUSIONS

We introduced a robust, data-driven method for adaptive shift-
mapping kernels in gradient-domain rendering. Our approach is in-
tegrated with adaptive sampling and enables flexible reconstruction
schemes. We demonstrated that our neural kernels adaptively gen-
erate neighbor selection policies that leverages surface interaction
properties, achieving superior performance compared to traditional
and other adaptive kernel methods.

Limitations and future work. Our method has a few limitations.
First, we have trained our network mostly on direct lighting which
can lead to degradation in quality for other integrators. Different
shift-mappings have different variance profiles that may result in
different sets of optimal neighbors. Second, we only trained our
network on uniform reconstruction [Rousselle et al. 2016] with pre-
dicted weights. We expect that different reconstruction will change
the neighbors selection significantly, especially if the reconstruction
is learning-based.

For future work, a natural avenue is the exploration of deep recon-
struction techniques that support unconnected kernels. Enforcing
reversibility directly during neighbor selection—rather than relying
on the post-processing currently employed—remains a key area of
improvement. Another avenue is the prediction of an optimal num-
ber of neighbors to consider dynamically. Incorporating efficiency
metrics based on the expected cost of primal versus gradient contri-
butions could also help balance quality and performance. Finally, we
believe extending our approach to other types of integrators, such as
temporal or volumetric integrators, would broaden its applicability.
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Fig. 10. Comparison between our method and baselines with uniform reconstruction [Rousselle et al. 2016] and our methods of reconstruction using our
predicted weights (p-Weight). We can see that in all regions, our method reduces dipole artefacts and accurately captures geometrical and shading changes.

Cross - CV-Weight (

Manzi et al. - CV-Weight Ours - p-Weight Ours - (p,CV)-Weight Reference

KITCHEN (32 spp)

(FLIP,SMAPE)] (0.092, 0.074) (0.092, 0.078) (0.093, 0.074) (0.088, 0.068)
COFFEE(4 spp) o f el

S (FLIP,SMAPE):
LIVINGROOM (16 spp)

(FLIP,SMAPE) (0.091, 0.061) (0.088, 0.065) (0.087, 0.058) (0.087, 0.057)

Fig. 11. Comparison between our method and baselines with CV weighted reconstruction [Rousselle et al. 2016] and our method combining our predicted
weights and variance statistics ((p,CV)-Weight). All regions see reduced reconstruction artifacts when variance statistics are included.
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