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Figure 1: Equal-time comparison (15 seconds) between our neural progressive photon mapping (NPPM), SPPM [HJ09] and CPPM
[LLZ"20] on the CRAB DOF scene with depth of field. The superscripts o and B respectively refer to the different radius reduction pol-
icy used by the two baseline methods, which we incorporate atop NPPM. Our technique reduces the overall bias compared to its nonneural
counterparts, capturing sharper caustics on most of the scene. False color error shows the MRSE metric.

Abstract

Photon density estimation is a robust solution for estimating complex light transport, such as those involving caustics and pure
specular interactions. The shape and bandwidth of the density kernel are both crucial in achieving optimal performance. Re-
cently, density kernels directly predicted by neural networks from local photon statistics have shown improved reconstruction
results for small numbers of photons. The direct weight prediction approach of these methods, however, is fundamentally in-
compatible with consistent estimators as it does not allow for direct control over bias and variance. We address this problem
by relying on a simpler yet effective analytical kernel, also inferred by a neural network. Unlike prior work, our technique
supports progressive schemes by design, hence unlocking a large variety of applications such as stochastic photon mapping.
Our method is fast, trivial to train and demonstrates state-of-the-art caustics reconstruction at equal-time over other photon
mapping techniques.

CCS Concepts
» Computing methodologies — Ray tracing; Neural networks;

1. Introduction unique challenges to classical Monte Carlo algorithms: not only
are they difficult to discover but they are also hard to explore effi-
ciently once found. Consequently, specialized rendering techniques
are required to achieve acceptable noise levels in production. Such
methods focus, for instance, on modeling and solving the intricate

geometric constraints of such paths [ZGJ20, FGW*24, FWW *25].

Light transport simulation aims to recreate the complex interac-
tions between light and matter in virtual environments. These inter-
actions, especially caustics—Ilike light focusing through a whisky
glass or sunrays slowly dancing on coral reefs—are crucial to pho-
torealism, especially in architectural visualization and visual ef-
fects. Caustic light paths formed from long specular chains present An alternative approach to traditional methods like path tracing
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is to employ spatial relaxation [Jen96], where the physical con-
straints of specular chains are softened to enable path reuse through
nearby clustering. Density estimation represents one such family of
techniques and offers an attractive balance between implementation
simplicity and robustness. A significant practical challenge, how-
ever, lies in determining the appropriate spatial relaxation kernel
parameters. This in turn introduces an inherent trade-off between
kernel shape and bandwidth, where one must maximize path reuse
while also minimizing the bias introduced in the underlying esti-
mator. As a result, the process of selecting optimal kernel settings
tends to be laborious and context-dependent as it must account for
local and arbitrarily complex radiometric properties such as photon
distribution patterns in a given scene.

To mitigate this problem, prior works have proposed adap-
tive and progressive density estimation methods based on statis-
tics gathered during the rendering pass [KD13, SFES07, KWX™* 16,
PAMMI19]. In particular, deep photon mapping (DPM) [ZXJ*20]
employs K-nearest neighbor (K-NN) and a small neural network to
predict weights for each photon, demonstrating impressive results
over standard photon mapping approaches. Intuitively, DPM learns
to adapt to the local context by exploiting statistics from collected
nearby photons. Unfortunately, this method cannot be combined
with consistent estimators as the kernel bandwidth and bias cannot
be directly controlled. This lack of control prevents applications
to a wider range of rendering methods [MBGJ22, WGH22, HPJ12,
GKDS12].

In light of these observations, we introduce neural progressive
photon mapping (NPPM), a learning-based framework that predicts
spatially adaptive kernels with progressive rendering in mind. Our
network generates parametric and normalized kernels that can be
restricted at will during the iterative rendering process. Since we
do not predict per-photon weights, our architecture eliminates the
need to compute and store deep context features for each photon.
Consequently, our method is not only simpler than DPM but also
fully controllable. Moreover, our design allows the use of a 3D grid
to average latent photon representations over time, enabling further
optimizations. Finally, we show how to effectively train our model
while ensuring compatibility with radius range queries, hence intro-
ducing the first learning-based progressive photon mapping method
to the rendering community.

To summarize, our contributions are:

e a simple and lightweight parametric neural model that can effi-
ciently adapts to the local photon distribution;

e a controllable density kernel scheme compatible with progres-
sive rendering methods; and

e an expressive latent representation that can be averaged and
stored on the scene surfaces.

2. Related Work

Photon mapping. Jensen’s seminal work on density estimation
[Jen96] has shown great promise in rendering complex light phe-
nomena like caustics. Photon mapping (PM) is now standard in
light transport simulation and has been adopted by production ren-
derers like the Corona renderer [§K19]. PM has been successfully

adapted to BSSRDF rendering [JMLHO1], volume photon map-
ping [JC98], and beam radiance estimation [JZJO8], and can also
be combined with other path construction techniques [GKDS12,
HPJ12, KGH*14] via multiple importance sampling [Vea98] for
improved robustness.

A key consideration in practice is the bias-variance trade-off
of photon mappers. The amount of bias can be reduced by in-
corporating ray differential information [SFES07], local radiance
gradient estimates [KWX*16], more flexible (but generally more
costly) kernels [PAMM19] or progressive kernel bandwidth reduc-
tion schemes [HOJOS, HI09, KZ11]. Since these kernel reduction
techniques can be sensitive to a nonoptimal initial radii, the overall
convergence of the estimator may suffer dramatically, leading to ei-
ther excessive bias or variance in the final image. A mitigation mea-
sure is to derive improved progressively shrinking strategies based
on derivative information [KD13] or xz—statistics [LLZ*20]. We fo-
cus on enabling progressive estimation through large, controllable
kernels while simultaneously minimizing bias. Our method is com-
patible with different radius reduction policies and surpasses the
performance of prior works.

Note that bias in density estimation can be further removed based
on Bernoulli trials [QSH* 15] or telescopic series [MBGJ22], at the
cost of a slight increase in variance. We see these techniques as or-
thogonal to ours and we expect our method to be compatible due
to our controllable kernel support. This control potentially allows
our method to be applied to path filtering algorithms, which per-
form local gathering with range queries [KDB16, WGGH20] or lo-
cal clustering [DHC*21], to reduce variance. Alternatively, meth-
ods for guiding photon’s emission [GPGSK18,EK20] or their entire
path [HI11,CWY11, GRS*16, vOHK16] can similarly be used in
our method to improve the overall photon distribution.

Neural methods for density estimation. Learning-based ap-
proaches have proven successful in many areas of rendering, in-
cluding Monte Carlo image denoising [CKS™ 17, IMF*21, HY21].
Such reconstruction techniques can be adapted to density estima-
tion [CM21] by extracting and combining correlated images with
different biases. We can incorporate these techniques into NPPM,
as we can bound the bias we introduce.

Photon mapping has also been applied to path guiding by bin-
ning photon contributions [Jen95]. Recently, neural methods have
been used to denoise these distributions [ZXS*21b], even when
they are stored in a quadtree [ZXS*21a]. Such methods are gener-
ally more memory intensive and require complex spatial partition-
ing strategies. Alternatively, neural networks can directly predict
distribution in path guiding [MMR*19] based on the framework
of normalizing flows [KPB21]. However, due to their complex ar-
chitecture, these approaches are often too expensive except when
targeting lower-dimensional distributions [LHL*24]. Simpler, on-
line neural guiding methods can also optimize for mixtures of von
Mises—Fischer [DWL23] or anisotropic Gaussian [HIT*24] distri-
butions. Our work is inspired by these parametric models as they
are both more computationally efficient and expressive enough for
density estimation.

To the best of our knowledge, only Zhu et al. [ZXJ*20] have em-
ployed neural networks for density estimation in rendering. Their
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proposed DPM approach leverages a PointNet-like architecture
[QSMG17] to directly regress photon weights, resulting in neural
kernels that outperform previous non-neural density estimators at
different photon sampling rates. DPM does not support a varying
number of nearest neighbors and, importantly, cannot be directly
used in a progressive estimator. NPPM addresses both these prob-
lems by providing an estimator that is consistent by construction.

3. Background

Density estimation. In surface rendering, we are interested in
computing the exitant radiance L, at a location X in the outgoing
direction @o:

Lo(x,mo):/Qﬁ(x,mo.,m)Li(x,m)(n.m)+dm, )

where f; is the BRDF, L; the incoming radiance in direction ® € €,
and n is the surface normal at x. As proposed in classical photon
mapping [Jen96], this exitant radiance can be formulated as a ker-
nel density estimation (KDE) problem on the photon map:

1 N
LR = 3 X Or(llxn = x| fi(x. 00, @) P, (2)
n=1

where N is the total number of emitted photons, r is the search ra-
dius, x; is the position of the n-th photon with flux &, and incoming
direction ®,. The flux includes the throughput of the photon. The
normalized kernel Q has support within radius r > 0 only, allowing
fast spatial query through specialized data structure or by using ray
tracing hardware routines [KBG23]. In general, this spatial kernel
is chosen to be simple and radial; for example Qr(d) = (nr?) ! if
d < r otherwise 0.

Deep density estimation. Zhu et al. [ZXJ*20] replace paramet-
ric kernels with a neural network that directly regresses a weight
for each collected photon. Under this framework, a deep context
vector ¢ € R is inferred from the nearby collected photons using
K-nearest neighbors at the gather point location x:

pr(x) = [Xllwmkvq’;c] .
c(x:8) = Poolk ({F(p,(x):0)}_, ).

Here, p, represents the concatenated photons’ input features in-
cluding the normalized position within the kernel support tran-
formed in tangent space X}, the photon’s incoming directions @y
and the associated tonemapped flux @/. Each photon is encoded
independently by a feature extractor network F with trainable pa-
rameters 0. To ensure input order invariance, the deep context vec-
tor is computed by average/max pooling across all K photons, fol-
lowing the design principles of PointNet [QSMG17]. The resulting
deep context vector (DCV) is then decoded by a separate network
D with trainable parameters @, substituting the kernel function in
Eq. (2) to yield the estimator:

3

K

- kar(x7m05mk)¢k7
Nmr? k; )

Wi = D([pk(X),C(X79)};(P)-

(Lo)f™ =
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A per-photon weighting scalar wy > 0 is predicted and the normal-
ization factor (nrz)f ensures that it remains scale-invariant with
respect to the K-NN radius.

Both networks are small multilayer perceptrons (MLPs) that are
trained jointly to minimize the L*-norm between the estimated ra-
diance from Eq. (4) and the target radiance Lo (X, @, ) obtained from
converged references. The error can stem from two sources: a poor
kernel (e.g., geometric discontinuities within its support), which
DPM is designed to handle, or too few photons to suppress vari-
ance. In the latter case, the incompatibility of DPM with the pro-
gressive frameworks blocks further variance reduction.

Progressive density estimation. Progressive photon mapping
(PPM) [HOJO08, HJ09, KZ11] introduces the concept of averaging
density estimates through multiple iterations. At each iteration,
the radius r is reduced to form a consistent estimator. Knaus and
Zwicker [KZ11] propose with APA to average the different density
estimates at each pixel and update the kernel’s radii as
2 it
i+1 = i+1 ri,
where o == 2/3 is a user-defined parameter to balance bias reduc-
tion and variance increase. The initial radius ry can be set to a con-
stant user input, optionally scaled by the scene’s extents, camera
ray differential or K-NN estimates on an independent photon map.
Alternate radius reduction schemes also exist [KD13,LLZ*20]. We
also utilize CPPM’s radius reduction policy which applies a thresh-
old on the minimum number of gathered photons (N, = 10) be-
fore reducing the radius by a constant factor (k = 1/0.8). To ensure
a consistent estimator, the minimum photon count is then increased
at each radius reduction step by a constant factor f = 1.2. We add
subscripts NPPM® and NPPMP to denote which radius reduction
strategy (APA’s or CPPM’s, respectively) is used in our results.

i€ 2207 ©)

3.1. Motivation

The application of photon density estimation often involves a deli-
cate balance between minimizing both variance and bias. Reducing
variance can be achieved by averaging more photons per gather
point by increasing the photon density via more aggressive photon
tracing or by using larger density kernels. These solutions can be
impractical and inefficient when implemented without extra care:

e Larger kernels effectively increase the number of reused paths
at each gathering point, amortizing the cost of the photon trac-
ing pass. However, these kernels can introduce additional bias if
their shapes do not adapt to the underlying photons’ density pro-
files. DPM address this by directly learning to predict the pho-
ton’s weights. This relies on K-NN for collecting photons and
does not offer a mechanism to compute the kernel normaliza-
tion factor. This is problematic when trying to control the bias
introduced.

e Tracing more photons naturally leads to memory problems. To
solve this, iterative methods can be employed to average pho-
ton passes. This iterative strategy can be combined with radius
reduction to make the estimator consistent.

Our main objective is thus to design a deep adaptive kernel that
can be combined with iterative radius reduction. To this end, we
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need our adaptive kernel to be controllable, implying we can ex-
press it at any bandwidth value. This in turn requires our method to
support range queries rather than K-NN. Our method must also be
lightweight as a massive amount of kernel density estimates will be
performed throughout the rendering process. Finally, our method
must retain information across iterations to ensure stable and pre-
cise predictions over time.

4. Neural progressive photon mapping

We now introduce our neural progressive photon mapping (NPPM)
algorithm and detail how consistency is enforced. Similar to DPM
[ZXJ*20], our approach modifies only the kernel evaluation, leav-
ing the rest of the photon mapping architecture unchanged. We first
describe the model architecture, including how our adaptive kernel
is normalized (Section 4.1). Next, we present a practical applica-
tion of our framework using 2D anisotropic Gaussian kernels (Sec-
tion 4.2). Finally, we discuss practical considerations (Section 4.3).

4.1. Model architecture

Figure 2 illustrates our framework. Similarly to DPM, we first pre-
process photon features to construct the input to our model. We
choose p;(x) = [x,] only. We express x| in tangent space (with
z = 0 for the surface plane) and use only this feature, as adding
photon directions or flux did not improve convergence in our ex-
periments. For instance, applying Russian roulette, photon flux re-
mains nearly constant across photons, rendering this feature unin-
formative. We also discard the z component of X', since retaining it
provided no measurable benefit. We encode each photon’s statistics
using a lightweight feature extractor network F. These latent fea-
tures are subsequently aggregated through both average/max pool-
ing layers to construct the deep context vector ¢, effectively rep-
resenting the gathered photon statistics in a shared latent space.
We augment this representation with a global statistic v (described
in Section 4.3), which encodes the overall photon density within
the kernel. A second network D then predicts our parametric ker-
nel. While this applies to arbitrary kernel families, we show that
iso/anisotropic Gaussian densities are sufficient candidates.

Kernel normalization estimator. Based on the predicted kernel
parameters, we compute a normalization factor to control the bias
in our method. We restrict the kernel domain to maintain this con-
trol by using the 2D disk 3; of radius r > 0. However, using a given
world-space radius makes our method scale-sensitive and hinders
its generalization across different scenes. We address this by refor-
mulating our adaptive kernel Q in a normalized space where r = 1.
This reparametrization yields the following normalization factor

—1
Z = </BQ(x;c,(p)dx) , 6)

which reciprocal can be estimated via Monte Carlo integration as

M
1 1 ¢ O(xmic. @)
Z =2 ¥ =S xep, ()
where p denotes the probability density function. Note that, be-
cause we estimate the reciprocal, Eq. (7) can introduce bias in the
true normalization factor’s estimate. This bias can be reduced to an

negligible level with sufficient samples or by applying debiasing
techniques [QSH™ 15, MBGJ22]. Since both methods incur signifi-
cant overhead, a more practical solution is to precompute and tab-
ulate the normalization factor when it is smooth and the kernel has
few parameters.

Parametric density estimator. We use our normalized adaptive
kernel to perform density estimation. Writing dj, := x; — X as the
2D displacement with respect to the gather point, our estimator is

NPPM 2 &
<L0>K - Wkgl Q(dk/r)ﬁ(xvm07mk)q)k7 (8)

where the factor T2 accounts for the radius rescaling. Note that

our estimator is similar to the KDE formulation on the photon
map (Eq. (2)). More importantly, it differs from DPM’s estimator
(Eq. (4)) in two key aspects:

e We decode the parametric kernel values using the DCV only
once. This approach is significantly more efficient than perform-
ing an MLP inference for each photon. This also allows our
method to amortize the cost of computing the DCV by exploiting
its spatial redundancy in 3D.

e Our kernel’s bias is controllable by restricting its domain. In ad-
dition, the kernel can be easily normalized through precomputa-
tion. This eliminates the need to jointly learn the kernel’s shape
and its normalization, enabling faster and more stable training.

4.2. Application: 2D truncated anisotropic Gaussian kernel

Kernel formulation. A suitable kernel candidate for our method
is a 2D anisotropic Gaussian centered at the gather point. In the
normalized space, this Gaussian has zero mean. Inspired by the
formulation from 3D Gaussian Splatting [KKLD23], we form a co-
variance matrix ¥ by constructing a 2D scaling matrix S(c, @) and
rotation matrix R(c, ):

Y(c,9) =RSS'R”, ©)

ensuring that ¥ is symmetric and positive semi-definite. Our pre-
dicted kernel is then defined as

0:"°(d) =15(d)-N'(d:0.%) / Z, (10)

where 15 is the indicator function on the unit disk and we have
dropped the dependency on the deep context vector and the de-
coder parameters for simplicity. Intuitively, our kernel resembles
an anisotropic Gaussian that gets truncated at unit radius (Fig. 2).

Kernel normalization. Since our predicted covariance matrix X
is determined by three parameters but the reciprocal normaliza-
tion factor (Eq. (7)) is invariant under rotation due to the disk-
shaped domain B, the look-up table (LUT) only needs to be two-
dimensional. We reparametrize our scale in log-space to get more
precision for small scale values. The full LUT takes at most 4 MB
of GPU memory.

Kernel hyperparameters. We construct our rotation matrix R by
predicting an angle & and rescaling by 27. The scale matrix S is built
by predicting two scaling factors sy,s, > 0. To ensure numerical
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Figure 2: Our NPPM architecture. We gather nearby photons in a given radius and compute per-photon features using a lightweight MLP
encoder F. The resulting features are then pooled into a deep context vector (DCV). This embedding is consumed by a decoder network D,
alongside the gathered density statistics, to produce the parameters (rotation and scale) of the 2D covariance matrix of a truncated Gaussian
distribution. Thanks to the symmetric nature of this kernel, we can precompute the corresponding normalization factor up to a rotation in a

small look-up table, hence enabling exact density estimation.

stability and prevent degenerate scales, we use an ELU activation
with oo = 1 and € = 1.0001:

2, ifz;>2

11
—2), ifz<2 b

si—e+ELU(zi—2)—e+{Zi_
exp(

with z; being the i-th output of the network. We clamp the scale
value to a maximum value of v/3, which makes the predicted Gaus-
sian corresponds roughly to a box kernel. We fix these hyperparam-
eters across all experiments.

4.3. Practical considerations

Implementing our algorithm efficiently requires addressing several
key considerations. This section examines how to support range
queries during both training and inference phases of our method.
We also demonstrate how our network design facilitates caching
and reuse of latent representations across different rendering it-
erations and scene locations, hence enhancing computational ef-
ficiency.

Range versus nearest neighbor queries. DPM [ZXJ*20] uses K-
NN since it does not need to control bias. Additionally, K-NN sim-
plifies implementation by ensuring that a constant number of pho-
tons is processed by the network, making both training and infer-
ence more parallelizable: since the number of photons per gather
point is fixed, the memory can be preallocated efficiently.

Our method is also compatible with nearest neighbors and can be
trained using this density estimation strategy. As our domain is re-
stricted to a disk B, however, we require range queries instead. This
results in a variable number of input photons, which complicates
batch training. To address this, we impose a fixed upper bound on
the number of photons collected. This leads to two scenarios:

I. Fewer photons than the maximum: We mask the missing pho-
tons by zeroing out their encodings and setting their associated
weights in the predicted kernel to zero. This introduces bias in
the average pooling. To compensate, we apply a correction fac-
tor £ = B/Kmatches to the mean vector, where B is the fixed batch
size (i.e., the maximum number of photons) and Kpaches 1S the
actual number of photons gathered. Max-pooling remains unaf-
fected by this change.

II. More photons than the maximum: We uniformly resample the
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photons to match the desired count. This can be efficiently im-
plemented using reservoir sampling, avoiding the need to store
the full list of gathered photons. We also store { as it is an eas-
ily accessible and valuable statistic to inform our decoder of the
relative photon density at the gather point location.

Computing the deep context vector In addition to the generated
deep context vector ¢, we append a compressed representation of
the relative photon density, defined as v = log(1 + (), to avoid sat-
urating c. This statistic is inexpensive to obtain, varies smoothly
across the scene and can guide the decoder towards more aligned
kernels.

Deep kernel evaluation After constructing the deep context vec-
tor ¢ with v, we decode the parameters of our normalized para-
metric kernel. Using these parameters, we query the corresponding
normalization factor from our LUT and evaluate the KDE estima-
tor (Eq. (8)). This estimator can either be applied to the (resam-
pled) subset of photons used to form the network input or to all
photons within the gather point radius via a separate range query.
Both approaches have trade-offs: reusing the resampled photons
reduces computation, but increases variance, especially when the
predicted kernel is narrow. We found that performing an additional
range query is more advantageous in practice, as it does not intro-
duce extra variance and its cost can be amortized using a spatial
latent averaging strategy, which we describe next.

4.4. Spatial latent averaging

Our approach naturally allows for decoupling the encoding and de-
coding of the deep context vector. To this end, we maintain a la-
tent representation at each pixel and average these representations
over multiple iterations. This approach allows the kernel’s adaptive
properties to gradually decay as rendering proceeds. While the en-
coder network is most computationally expensive (as it is applied
independently to each of the B photons selected per gather point),
the decoding network is invoked only once per gather point. As
such, an opportunity arises to amortize the DCV encoding opera-
tion across gather points and iterations.

By exploiting the smoothness of the photon distribution over the
scene surfaces, we propose to combine our method with a 3D grid
that store and access these latent representations. The grid size is
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Figure 3: Examples of our procedurally generated training dataset.
Gather points travelling through dielectric surfaces are masked out
to avoid excessive noise during training.

initialized according to the largest axis of the scene’s bounding box.
At each iteration, we perform the following two steps:

1. Collect photons at a subset of gather points, encode them, and
average their resulting DCVs along with the density statistic v
inside the 3D grid. To avoid aliasing, we apply stochastic jitter-
ing to the gather point locations before splatting [BFK20].

2. Retrieve the averaged deep context vector from the grid, decode
the corresponding adaptive parametric kernel, and perform ker-
nel density estimation using a range query (Eq. (8)).

Averaging the spatial DCV can be done using a small exponential
smoothing factor (y = 0.5) or by averaging over all iterations. We
found that averaging over all iterations gives slightly better results
than exponential smoothing. We leave the investigation on the best
policy to update our spatial grid as future work. This grid approach
achieves better performance compared to predicting the DCV at
every iteration for all gather points, as it reduces noise in both the
produced DCV and the density statistic v, as well reduce our overall
cost. Sharp discontinuities in the photon density can introduce bias;
however, this bias remains bounded due to the underlying proper-
ties of our kernel and will vanish during the progressive rendering
process.

Early stopping To further reduce overhead, we stop updating the
latent representations after 50 iterations. This strategy is similar to
that used in neural path guiding [DWL23,HIT*24]; however, unlike
neural path guiding—which relies on online training and maintain-
ing computation graphs—our method only performs MLP evalua-
tions per photon for encoding.

Surface normal test During photon gathering (both for producing
the DCV or performing KDE (Eq. (8)), we reject photons whose
surface normals significantly deviate from that of the gather point.
This filtering strategy is common in traditional photon mapping to
reduce bias. In our setting, we found that applying this normal-
based filtering helps the network focus on more relevant regions of
the scene, rather than over-emphasizing geometric discontinuities
such as edges, creases and corners. Our adaptive kernels account
for these regions by predicting better suited kernels.

4.5. Training

Dataset generation. Our training set consists of 50 procedurally
generated scenes rendered at a resolution of 256 x 256. Figure 3
shows a few representative examples. In all scenes, we isolate and
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Figure 4: We plot and visualize the MRSE error for SPPM and our
method across various radius scales. Our method consistently out-
performs the box kernel, with diminishing returns at smaller radii.

compute only the caustic component of light transport to let the
network focus on complex and high-frequency photon distributions
typical of caustics. Reference images are generated using progres-
sive photon mapping [HOJO8]. Range queries are performed at run-
time to augment our data with random photon maps. We uniformly
pick radii in fixed intervals to add variability in the density of pho-
tons. We set the maximum number of photon to Kmax = 1000 and
apply our masking and resampling strategy from Section 4.3. We
use a high value here to mitigate the noise on training gradients
caused by the resampling step. In total, our dataset is composed of
more than 3.2 million supervised training samples.

The scenes themselves are randomly generated from an interior
cube. We assign random albedo colors to each diffuse wall and
place a rectangular area light source with random orientation, scale,
and position. We then insert multiple dielectric for caustics and dif-
fuse objects for shadows and non-flat surfaces shading scenarios.
We apply random bump mapping to all dielectrics, producing a
wide variety of intricate light patterns. We further randomize the
position and look-at direction of the camera.

Encoder pre-training. To stabilize and accelerate training, we
pretrain our encoder network F'(0) within a variational autoencoder
(VAE) [KW14]. The VAE is trained to capture and reconstruct the
input photon distribution, thereby promoting an expressive deep
context vector (DCV) that generalizes across a wide range of pho-
ton distributions. To reuse the pretrained encoder in our kernel
adaptation network (Fig. 2), we predict the mean and variance of
K = 32 Gaussians through a single linear projection from the DCV.
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New photons are then generated by sampling from these Gaussians
and decoding their positions with a small MLP. The VAE is op-
timized for 300 training steps on small subsets of the dataset by
minimizing the Chamfer distance between the generated and input
photons. In practice, we found it more effective to freeze the en-
coder and use it directly to produce the DCV fed into our kernel
decoder D(@), rather than retraining it from scratch.

Model hyperparameters and optimization. Our feature extrac-
tor network F (@) is a 3-layer MLP with Tanh activations, while
our decoder D(@) shares the same characteristics. We use ¢ = 32
dimensions for our deep context vectors.

We use the Adam optimizer [KB15] with a learning rate of 1074,
To manage memory usage during training, we subsample 50% of
the image pixels, as backpropagation over all gathered photons ex-
ceeds our GPU memory capacity. We minimize the L*-loss com-
puted between the predicted and target radiance values, both passed
through the compression function

L log(1+uL) /log(1+p), (12)

where p = 5000, following Zhu et al. [ZXJ*20]. We initialize the
network to produce small kernels at the start of training, as we
observed that large initial kernels often cause the optimization to
converge to poor local minima. We optimize our model for only
10 epochs on an NVIDIA RTX 3080 GPU. This takes roughly 90
minutes, a stark contrast with DPM reporting two days of training.

5. Results

Implementation details. We use Mitsuba 3 [JSR*22] to perform
the eye pass and the photon tracing pass. We then execute our radius
search on the GPU using a custom CUDA implementation of fixed-
radius nearest neighbors search by Rama [Ram14]. We use Py-
Torch [PGM* 19] and fully-fused MLPs [MZ21] for acceleration dur-
ing training. All our test references are computed with stochastic
progressive photon mapping (SPPM) [HJ09] to have fresh gather
points at every iterations. We reimplemented DPM [ZXJ*20] as
no open source codebase is available. Similarly, we reimplemented
CPPM [LLZ*20] in Mitsuba 3. All learning methods are trained on
our dataset described in Section 4.5. We will release our implemen-
tation and our generated dataset upon publication.

To evaluate our approach we use Mean Squared Error (L?) and
Mean Relative Squared Error (MRSE) with € = 1072, We also used
the Symmetric Mean Absolute Percentage Error (SMAPE) to eval-
uvate fireflies in the unbiased application. All results were obtained
under equal iteration counts or equal runtime conditions. For the
photon encoding, we use range query with 50 maximum photons.
SPPM, CPPM, and our NPPM use all photons. We trace 2M pho-
tons/iteration for the CRAB DOF and CRAB scenes (Figs. 1, 6
and 11); all other scenes use 400K photons/iteration. For glossy
materials, we use 0.1 as minimum roughness to deposit photons and
gather points. No guiding is performed during the tracing. DPM
contains a total of 6.2K parameters, whereas ours only has 2.5K
parameters.

Sensitivity to range query size. Figure 4 shows how our method
is more robust to the scale of the range query compared to the non-
adaptive box kernel from SPPM. All closeup images are produced

© 2026 Eurographics - The European Association
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Reference

CPPM ) NPPMP

0.116/1:

Figure 5: Equal-time comparison over five minutes of CPPM
[LLZ*20] and NPPMP in the CLASSROOM scene. The scene con-
tains several glossy materials, including the whiteboard, chairs,
and desks. Glossy surfaces are challenging for photon mapping
methods, particularly at grazing angles such as those observed on
the chair seats and desks.

by averaging multiple density estimates to make the bias more ap-
parent. The improvement of our method diminishes with smaller
kernels, unsurprisingly, as the assumption of uniform density holds
in this regime. When the radius falls below a certain threshold (1.0
ray differential radius), we switch to a box kernel to maintain nu-
merical stability and reduce computational cost.

Consistent method comparions. Figure 6 shows the comparison
between our methods with anisotropic 2D kernels, SPPM [HJ09]
and CPPM [LLZ*20]. We omit DPM [ZXJ*20] since it cannot be
made consistent. CPPM has a different reduction policy based on
the Xz-test, which often reduces the radius faster than SPPM, hence
reducing the overall bias. Our method NPPM® uses the same re-
duction policy as APA, so that each iteration gather the same set of
photons. Due to a more expressive kernel, our method can achieve
improved convergence with significantly lower bias. We also in-
clude results for our method NPPMP. This more aggressive reduc-
tion strategy reduces bias by employing smaller bandwidths. Un-
like CPPM, this strategy does not rely on a statistical test; instead,
the radius is reduced geometrically once a minimum photon count
is reached. The rendered images in Fig. 6 show results compara-
ble to CPPM. In scenes with depth of field effects, such as GLASS
DOF, CPPM’s per-pixel statistical assumption breaks down, pro-
ducing blurrier caustics compared to our method. However, in uni-
formly lit regions, our method performs slightly worse than CPPM.
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Reference ; SPPM* NPPM* CPPMB NPPMB Reference

Artware

Glass DoF

L2/MRSE/it: 0.45/0.52/413 007/015/299 0.03/0.06 /400 003/010/500

Figure 6: Comparison for NPPM with SPPM [HJ09] and CPPM [LLZ*20] at equal-time (30 seconds) with different radius reduction
strategies. Our method produces sharper caustic details than SPPM. In some cases, CPPM tends to blur more complex caustic patterns (e.g.,

ARTWARE, GLASS DOF); however, its radius reduction strategy better preserves uniform, well-lit regions, which can lead to lower overall
error.
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Table 1: Performance breakdown between SPPM and our method (NPPM®) for two representative scenes at different iteration counts (5 /50
/500 it.). All values are in milliseconds. Tracing time includes both eye and photon passes. Overhead is computed relative to the total SPPM
time (Tracing + SPPM Eval.) compared to our method (Tracing + Enc. + Dec. + NPPM Eval.).

Scene Tracing SPPM Eval.

Enc. + Dec.

NPPM Eval. Overhead (%)

ARTWARE  60.0 70.3/42.1/22.5

343/27.1/1.5

107.1/69.5/33.6  54.5% /53.3% / 15.2%

12.8/11.5/1.5

219/17.6/5.9 44.3% 1 46.0% / 6.5%

CRAB 53.2 797149/3.7
Artware Crab
| |
014 ‘
o ool |
Eon \
F 0.065
| “m
0.08{ M‘ et s 0.060: “ \ o
Iteration Iteration
== CPPM == SPPM == NPPM% NPPMP

Figure 7: Per-iteration runtime for all methods on ARTWARE and
CRAB. Runtimes are smoothed with an exponential moving aver-
age, and timings before the Sth iteration are excluded for improved
readability.

Support for glossy materials. We support a microfacet conductor
BSDF (GGX) in our GPU implementation. Figure 5 demonstrates
our method on glossy surfaces in the CLASSROOM scene. While
our method exhibits some low-frequency noise on glossy surfaces,
it outperforms CPPM, which tends to overblur sharp caustics. Graz-
ing view angles produce noisy results across all our tests. Including
roughness information in the DCV or combining our method with
vertex connection and merging (VCM) [GKDS12] may be promis-
ing directions for further improving results on such surfaces.

Timings. Table 1 quantifies the inference time of our NPPM ap-
proach compared to SPPM on the ARTWARE and CRAB scenes.
ARTWARE exhibits highly heterogeneous photon density, with cer-
tain regions containing very high photon counts. In contrast, CRAB
features a more homogeneous and sparse photon distribution across
the scene. As a result, CRAB yields shorter range query and eval-
uation times than ARTWARE, as it produces a more uniform and
smaller workload on the GPU. During the first phase, in which we
encode 10% of the gather points and update the grid, our method
represents a 45-55% overhead. This phase lasts for only 50 itera-
tions, after which we simply read the DCV from the grid and de-
code it. This results in a final overhead ranging from 6-15%. Fig-
ure 7 provides a broader view of per-iteration cost during progres-
sive rendering. For both NPPMP and CPPM, the range query radius
decreases more rapidly, leading to faster evaluation and further re-
ducing overhead. However, the highly heterogeneous query sizes
introduced by CPPM’s radius reduction scheme can cause GPU
performance slowdowns. In contrast, our method makes more ef-
ficient use of GPU memory, enabling higher iteration counts under
the same time budget. Further optimizations are possible; for in-
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stance, using a hash grid similar to Binder et al. [BFK20] or other
spatially accelerated data structures would likely reduce our over-
head further.

Unbiased estimators Explicit control over the kernel bandwidth
is required for unbiased density estimation via telescopic se-
ries [MBGJ22], which is naturally supported by our adaptive kernel
approach. For this application, we adapt our parametric kernel with

05" (@) = 15(d) - (1-d)° / Zeone, )

so that it mimics a parametric cone kernel, yielding smaller asymp-
totic variance compared to constant kernels [MBGJ22]. We obtain
the normalization term Zcope = MIZ)% by analytically integrat-
ing the kernel function. Our neural architecture is optimized to pro-
duce a suitable T > 0.1 for adaptive density estimation, in the same
way as Q%DG‘ This experiment also illustrates how our framework
can be extended to other parametric kernels, highlighting its poten-

tial for generalization.

Figure 8 compares progressive estimators obtained with our
method and with standard density estimation, along with their un-
biased variants. We use the same random numbers to correlate the
stochastic radius selections and the photon map generations, since
unbiased variants often exhibit instability in convergence curves
due to rare unlikely very small radii sampled. The comparison
demonstrates that our method benefits both progressive and unbi-
ased estimators by reducing overall error. While unbiased estima-
tors show larger error than their biased counterparts, the resulting
images remain compatible with existing denoising methods. It is
important to note that, in theory, correlations between kernel esti-
mations and local statistics during the grid construction phase may
introduce bias. However, we did not observe clear bias both visu-
ally and quantitatively.

Convergence analysis Figure 9 shows the evolution of L2 and
MRSE for our methods, SPPM, and CPPM over rendering time.
These results reinforce the trends observed in Figure 6: the intro-
duction of depth of field reduces the performance gap between our
approach and CPPM. Notably, our method consistently achieves
lower error rates at shorter durations, which is advantageous for
preview settings. At longer durations, our method delivers render-
ing quality that is on par with, or slightly below, that of CPPM on
average.

5.1. Ablation study

Range-query versus K-NN Figure 10 shows a comparison be-
tween photon mapping, DPM [ZXJ*20] and our method with
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Figure 8: Comparison between our method using an adaptive cone
kernel, SPPM [HJ09], and Unbiased PM [MBGJ22], both using
fixed cone kernels. Our method reduces bias in sharp caustic re-
gions and decreases fireflies in the unbiased case. Error maps show
MRSE for progressive methods and SMAPE for unbiased counter-
parts.

range-query and K-NN. We can see that adopting a progressive
approach is important in order to reduce bias. In this scenario,
DPM diverges since nothing in its design enforces the normaliza-
tion of the kernel; consequently its consistency suffers. Our ap-
proach strongly reduces bias on sharp caustics while preserving
smooth lighting in uniform density regions. Thus making it effec-
tive in range queries and progressive settings thanks to our normal-
ized kernels.

Number of iterations for DCV averaging. While our method
does not require online training during inference, DCV formation
remains a major bottleneck since its cost grows linearly with the
number of gathered photons. To mitigate this, our approach relies
on spatial latent averaging (Section 4.4) and gatherpoint subsam-
pling. Table 2 illustrates the diminishing impact of the number of
averaging iterations on both error reduction and rendering time.
Based on these results, we select 50 iterations as a practical com-
promise between computational overhead and overall accuracy.

Grid resolution. The resolution of the grid used to store the DCV
spatially is an important hyperparameter. Low resolutions tend to
over-blur the latent codes, resulting in poorly fitted kernels and vis-
ible bias in the final image. Conversely, higher resolutions increase
memory consumption and slightly raise the cost of retrieval and
updates. Table 3 summarizes the impact of grid resolution on im-
age quality, showing diminishing returns beyond a certain resolu-
tion. In all our experiments, we use a 256° grid, which fits com-
fortably within the GPU memory. More optimized data structures,
such as hash grids or tree-based layouts, could further improve per-
formance while maintaining a comparable memory footprint.

The resolution of the grid used to store the DCV spatially is an
important hyperparameter. Low resolutions tend to over-blur the
latent codes, resulting in poorly fitted kernels and visible bias in

J. Benoist & J. Litalien & A. Gruson / Neural Progressive Photon Mapping

Table 2: Effect of number of iterations for the DCV averaging for
100 passes in the ARTWARE with NPPMP.

Iterations MRSE (x10~%) MSE (x107°) Time (s)
1 iter. 8.83 2.86 12.41
10 iter. 2.84 1.40 12.59
100 iter. 2.60 1.11 13.57

Table 3: Impact of grid resolution on rendering error for the ART-
WARE scene using NPPM® with 100 iterations. The 4003 configu-
ration corresponds to the maximum resolution that fits within our
hardware.

Grid Resolution MRSE (x1073) MSE (x10™%)
643 3.00 1.74
1283 2.35 1.36
256° 2.31 1.33
400° 1.99 1.21

the final image. Conversely, higher resolutions increase memory
consumption and slightly raise the cost of retrieval and updates.
Table 3 summarizes the impact of grid resolution on image quality,
showing diminishing returns beyond a certain resolution. In all our
experiments, we use a 256° grid, which fits comfortably within the
GPU memory.

Figure 5 and Figure 11 demonstrate that the uniform grid can
also handle larger scenes. For even larger environments, we recom-
mend using adaptive data structures, such as sparse grids, octrees,
or kD-trees constructed from gather-point statistics during a pre-
processing stage. These structures would significantly improve the
memory efficiency of DCV storage, although computation speed
may be reduced due to the logarithmic traversal complexity. Ex-
ploring such data structures and implementing the corresponding
DCV interpolation are left for future work.

6. Conclusions

We have presented neural progressive photon mapping (NPPM),
a learning-based framework that addresses kernel parameter se-
lection challenges in density estimation through spatially adap-
tive, analytical kernels. Our lightweight neural model efficiently
adapts to local photon distributions while maintaining compatibil-
ity with progressive rendering workflows and consistent estimators.
NPPM represents the first learning-based progressive photon map-
ping method, providing a practical solution for high-quality caustic
rendering that combines neural adaptivity with the controllability
required for robust light transport simulation.

Limitations and future work. Although independent truncated
Gaussians produce consistent estimators, our kernels actually de-
pend on the photon distribution and are therefore correlated. As
such, we cannot claim theoretical consistency for our estimator. In
practice, this does not cause issue with NPPM®, as shown in the
convergence plots in Fig. 9.

© 2026 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Figure 9: Convergence curves per time step (seconds) of our methods NPPM, SPPM [HJ09] and CPPM [LLZ"20] over five minutes. Our
method with the APA radius reduction scheme NPPM® exhibits consistent convergence and higher quality renders than SPPM. Although
NPPMP demonstrates superior performance over CPPM in short-duration scenarios, the hypothesis testing scheme of CPPM leads to lower

or equivalent long-term error rates.

KNN=50

Range query Progressive

(0.37, 1.11)

(10.32, 49.29)

(3.80, 8.50)

Figure 10: Comparison between our method, DPM [ZXJ*20] and
SPPM [HJ09]. Neural methods outperform box kernel for single
queries. However, due to its non-progressive design, DPM diverges
when radius reduction is applied. We show the SMAPE in false
color; numbers refer to L?* and MRSE scores, respectively.

For future work, we posit that incorporating material information
into our photon features before encoding could potentially produce
better-adjusted kernels. Extending our method to support more ex-
pressive parametric kernels, such as multi-modal or piecewise dis-
tributions, could also be particularly beneficial for volumetric pho-
ton rendering and guiding, where complex scattering patterns re-
quire sophisticated kernel representations to be well captured.

© 2026 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Figure 11: Equal-iteration comparison of different grid resolutions
for a larger version of the CRAB scene across multiple zoom levels.
The renderings were obtained with 2M photons per iteration and
identical initial radii.
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